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Abstract—Autonomous navigation in an unknown or uncertain
environment is one of the challenging tasks for unmanned aerial
vehicles (UAVs). In order to address this challenge, it is necessary
to have sophisticated high level control methods that can learn
and adapt themselves to changing conditions. One of the most
promising frameworks for such a purpose is reinforcement learn-
ing. In this paper, a novel model-based reinforcement learning
algorithm, TEXPLORE, is developed as a high level control
method for autonomous navigation of UAVs. The developed
approach has been extensively tested with a quadcopter UAV in
ROS-Gazebo environment. The experimental results show that
our method is able to learn an efficient trajectory in a few
iterations and perform actions in real-time. Moreover, we show
that our approach significantly outperforms Q-learning based
method. To the best of our knowledge, this is the first time
that TEXPLORE has been developed to achieve autonomous
navigation of UAVs.

I. INTRODUCTION

In recent years, unmanned aerial vehicles (UAVs) have been

extensively applied for different types of civilian tasks, e.g.,

object tracking [1], wildlife protection [2], disaster rescue [3],

and 3D reconstruction [4]. Regardless of numerous applica-

tions, autonomous flight of UAVs is still a challenging area

in the domain of control for many reasons. To achieve high

autonomy in UAV tasks by using model-based controllers,

the controller requires a precise mathematical UAV model.

However, in practice, dynamics of UAVs are difficult to model,

and they are usually sensitive to unforeseen internal or external

uncertainties. Therefore, it is essential to provide a learning

ability to UAVs in order to adapt their behavior to changing

conditions. One of the most common frameworks for learning

and adapting its behavior is reinforcement learning (RL). The

RL methods enable an agent to learn right actions with little

or no prior knowledge about its environment or dynamics, and

it can be used to adapt to randomly changing environmental

conditions [5]. Therefore, the RL methods have become a

promising tool for improving autonomous behavior in different

robotics applications, e.g., [6].

For having a fully autonomous UAV flight, it is necessary to

have a sophisticated high level control that allows the UAV to

make intelligent decisions to complete a mission. Because of

its nature, RL can effectively be utilized in a high level decision

making system to learn an efficient mission route for UAVs

despite limited knowledge of the environment. Therefore, the

main purpose of this paper is to demonstrate an implementation

of the RL method as a high level control of UAV mission in

an unknown or uncertain environment. In particular, this paper

focuses on learning an efficient mission route using RL for

quadcopter UAV in real-time.

The experiments conducted in this paper are arranged to

represent one of the potential real-life applications of UAV

that may benefit from RL. Finding an efficient route, when

UAV is constrained in mission time or battery life, is very

important to achieve a safe autonomous flight. For this reason,

in our experiments, the quadcopter UAV monitors its position

and battery level, and it learns to modify its route, if it is

necessary for the intermediate recharging of batteries in order

to safely achieve its objective.

In this paper, we use the model-based RL algorithm known

as TEXPLORE [7]. TEXPLORE is designed to address the

real-world tasks such as robotics problems. In contrast to

many RL algorithms, e.g., Q-Learning [8], which ensures

optimality by random and exhaustive exploration, TEXPLORE

implements targeted exploration quickly on states that are both

uncertain in the model and promising for the final policy. The

RL algorithms, which perform thousands of actions to learn,

are not practical for real robots, especially for UAVs, since

these real-world actions may be dangerous and expensive.

Therefore, TEXPLORE is the method that learns in very few

episodes and it allows to take actions in real-time due to its

parallel architecture [9]. These properties of TEXPLORE are

promising to solve the necessary challenges to be successful

in real-world problems. To the best of our knowledge, this is

the first time in literature when TEXPLORE is developed to

achieve autonomous navigation of UAVs.

To effectively elaborate our proposed approach, we use

the robot operating system (ROS) and Gazebo simulator as

the testing environment. The main reason for utilizing the

combination of ROS and Gazebo is that it provides seamless

interfaces with the real quadcopter UAV. In addition, the

software implementation used in ROS-Gazebo can be directly

implemented in real quadcopter flights.

The rest of this paper is organized as follows: Section II

states quadcopter dynamics. Section III explains the model-

based RL algorithm, i.e. TEXPLORE, in detail. Section IV

describes the experimental setup. Section V provides simula-

tion results that show the efficiency of our solutions, while

Section VI presents the closing remark.



II. QUADCOPTER DYNAMICS

In this section, we introduce a necessary background on

quadcopter dynamics. In general, a quadcopter can be consid-

ered as a rigid body to which torques and forces are applied

from the four rotors located at the vertices of a square. We

have the world-fixed inertial reference frame CI and a body-

fixed frame CB attached to the quadcopter, where the center

of mass of the quadcopter is the origin of the body frame

CB . The axes of the body-fixed frame CB , ~xB and ~yB , lie on

the plane defined by the four rotors, while the axis ~zB points

downwards in the opposite direction of the total thrust. The

quadcopter model with reference frames is shown in Fig. 1.

The locus (x, y and z) of the quadcopter is determined by

the position of its center of mass with respect to the inertial

frame CI , while the attitude is described by the ZYX Euler

angles (roll φ, pitch θ and yaw ψ). Therefore, the rotation

matrix R from the body frame CB to the inertial frame CI
can be defined using aforementioned Euler angles:

R =





cθcψ sφsθcψ − cφsψ sψsφ + cφsθcψ
cθsψ cψcφ + sφsθsψ cφsθsψ − sφcψ
−sθ cθsφ cθcφ



 , (1)

where c∗ is cos(∗) and s∗ is sin(∗) for simplicity. Hence, the

quadcopter dynamics can be written by the following equations

[10]:

ṙ = v (2)

v̇ = g +
1

m
Rf (3)

ω̇B = J−1τ − J−1
ΩJωB (4)

Ṙ = RΩ, (5)

where m is the total mass, g = [0, 0, g]T is the vector of

gravitational acceleration (g = 9.81m/s2), v is the velocity of

the quadcopter in the inertial frame CI and it is given by

v =
[

vx vy vz
]T
, (6)

f = [0, 0, fz]
T is the total thrust vector, where fz is the sum of

all forces generated by the four rotors which are aligned with

−~zB axis and it is given by

fz = f1 + f2 + f3 + f4. (7)
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Fig. 1: Quadcopter model with reference frames.

Similarly, the quadcopter’s angular velocity with respect to the

body frame CB is defined as

ωB =
[

ωx ωy ωz
]T
, (8)

Ω is the tensor form of ωB and it is given by

Ω =





0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0



 , (9)

then, τ = [τx, τy, τz]
T is the torque vector on the quadcopter

with respect to the body-fixed frame CB . J = diag(Jx, Jy, Jz)
is the inertia matrix and r = [x, y, z]T is the location of the

quadcopter in the inertial frame CI .

The quadcopter control input µ is described with three

torques and the total thrust as follows:

µ =
[

fz τx τy τz
]T

(10)

and the quadcopter’s state ξ is

ξ =
[

x y z vx vy vz φ θ ψ ωx ωy ωz
]T
. (11)

The additional details regarding the quadcopter dynamics can

be found in [10]. The numerical values of the quadcopter’s

parameters are the following: the total mass is equal to 0.71kg,

the arm length is 0.17m and [Jx, Jy, Jz] = [0.007, 0.007, 0.012]
kg ·m2

III. MODEL-BASED REINFORCEMENT LEARNING

ALGORITHM - TEXPLORE

Reinforcement learning is a machine learning method

wherein an autonomous agent learns to find a (near)-optimal

behavior through trial-and-error interactions with its envi-

ronment [5]. This learning process is achieved by adopting

Markov decision process (MDP) formalism where the agent

performs learning through the sense-act-learn cycle. MDP is

defined by a set of possible actions A, a set of possible states

S, a reward function R(s, a) and a state transition distribution

P (s′|s, a) or T (s, a, s′) which describes the dynamics of

the system. In the standard RL scenario, the agent receives

current state s ∈ S represented as the sensory input from

the environment. Depending on the state s and its knowledge

about past experience, the agent decides which action a ∈ A
to take. After taking this action, the agent reaches a new state

s′ determined from the state transition distribution P (s′|s, a)
and obtains the reward R(s, a). The optimal state-action value

function, denoted by Q∗, which calculates the expected returns

(sum of discounted rewards) for a given state-action pair (s, a),
can be defined by the following equation:

Q∗(s, a) = R(s, a) + γ
∑

s′∈S

P (s′|s, a)max
a′∈A

Q∗(s′, a′), (12)

where γ ∈ (0, 1) is the discount factor. Then, there exists an

optimal policy, π∗, which is defined as:

π∗(s) = argmax
a∈A

Q∗(s, a). (13)



Thus, the agent learns how to modify its behavior in the

motivation of obtaining maximum cumulative reward over its

lifetime.

In general, the RL methods, which use the value function

approach, can be divided into two categories: model-free and

model-based methods. In contrast to model-free (or direct)

methods, where the value function is updated by directly using

experience (s, a, s′, r) obtained from the environment, model-

based (or indirect) methods update the value function from

a model of the environment. In particular, each time when

the agent obtains a new experience, it learns a model of

the environment by estimating the state transition distribution

P (s′|s, a) and the reward function R(s, a) for each state-

action pair. Then, the agent performs the exact planning on

the learned model to update a policy by using various methods

such as policy or value iteration [5]. As a result, the typical

structure of the model-based RL methods is sequential as it is

depicted in Fig. 3. In addition, the model-based RL methods

have a better sample efficiency compared to the model-free

methods, since the sample-efficiency of the model-based RL

algorithms is only limited by the number of actions the agent

performs to learn a decent model of the environment. On the

other hand, planning and model learning are computationally

expensive, and therefore, most of the model-based RL algo-

rithms are not really feasible for real-time systems. Fortunately,

TEXPLORE utilizes a parallel architecture which allows to

take actions based on the current policy as quick as required

without waiting for the completion of planning and model

update [9].

A typical model-based agent consists of three main com-

ponents, namely the action selection, model learning, and

planning. In order to separate the computationally-intensive

processes from the action selection part, TEXPLORE places

each component on its own parallel thread. Thus, the planning

and model learning run in the background; while the action

selection part directly interacts with the environment by taking

actions as fast as required based on the most recent policy.

As for model learning, TEXPLORE learns a model of the

environment by using decision trees, namely C4.5 algorithm

implementation [11]. Decision trees learn to predict the relative

change in the state (or the transition effects), srel = s′−s, and

the reward function based on the state-action pair (s, a). The

Environment 

Updating 

Model 

Planning 

on Model 

Action 

Selection 

Agent 

Action 

Reward 

State 

Fig. 3: The typical model-based reinforcement learning sce-

nario.

learning of the transition effects provides a better generaliza-

tion of the impacts of actions across the states when compared

to the learning of the absolute outcomes. However, a single

model may incorrectly represent the environment. Therefore,

several models of the environment are learned by forming a

random forest [12]. The final representation of the environment

is the average of the representations of the models derived

from decision trees. Because of averaging, the uncertainties

in the models are naturally incorporated in the final model.

Thus, TEXPLORE incorporates generalization with targeted

exploration on states that are both uncertain in the model and

promising for the final policy.

In contrast to conventional model-based RL methods, which

use value iteration for exact planning, TEXPLORE utilizes

Upper Confidence bounds applied to Trees (UCT) algorithm

[13] to plan approximately. The planning is performed by

simulating paths (roll-outs) starting from the current state s to

a maximum search depth. Along its way, it updates the value

function by using the most recent model of the environment.

Since the planning runs in the background without stopping,

more accurate policies can be obtained with more roll-outs.

In Fig. 2, the control architecture of the proposed solution is

given. In this architecture, the agent is the high level decision

making system. As can be seen from Fig. 2, the action selected

by the agent is translated to the trajectory commands for UAV

to understand. Then, the position control provides the specific

low level control commands to UAV.
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Fig. 2: The control architecture of the UAV.



IV. EXPERIMENTS

To achieve a safe autonomous flight, the quadcopter should

always monitor its battery level, motor conditions, sensor read-

ings, and if necessary, it should make intelligent decisions, for

example changing the route for the intermediate recharging of

batteries. In this section, the experiment is arranged to illustrate

a quadcopter with a mission of finding an efficient route to

the goal location when it is limited in battery life. During

its flight, the quadcopter constantly monitors its position and

battery level and decides when it should change its route

for the intermediate recharging. In addition, usually when the

quadcopter reaches the goal, it does not have enough battery

to make further surveillance in the target region. To handle

such cases, our quadcopter agent should also learn the best

recharging location in order to have the highest possible battery

level when it reaches the goal.

In order to represent the aforementioned scenario, the

quadcopter agent is simulated within a grid map as shown

in Fig. 4. The quadcopter agent starts randomly in the left part

(within the red box) of the map and tries to reach the goal

location (the blue cell) in the right part of the map. The bottom

(BRR) and top (TRR) rows represent the possible recharging

locations for the quadcopter agent. It should be noted that at

each episode the quadcopter agent starts with the maximum

battery level, but it cannot reach the goal location without

recharging at least once.

The state of the agent is described by 3 parameters, namely

(x, y) location on the grid (sx ∈ [0, 40], sy ∈ [0, 20]) and the

battery level (sbattery ∈ [0, 25]). In each state, the quadcopter

agent has 8 possible actions, i.e. it can move horizontally,

vertically, and diagonally to any adjacent square. The actions,

which result in horizontal or vertical movements, have a reward

of −1; while the actions with diagonal movements have a

reward of −1.4. With each performed action the battery level

decreases by one and when it drops down to 0 the agent

terminates its episode with reward −500 which can be con-

sidered as the crash of UAV. In addition, when the quadcopter

hits the boundaries with an action, it will remain in the same

location and receive reward −10. When the quadcopter agent

reaches the goal location, the episode will finish with a reward
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Fig. 4: The grid map. Starting states are within the red box,

the goal is in blue. TRR and BRR stand for the top and bottom

recharging rows, respectively.

of 0. Finally, the reward function for recharging batteries in

coordinate sx in the top or bottom row is defined as:

R(sx) = b+ sx mod 41, (14)

where b = −50 for the top row and b = −100 for the bottom

row; while sx dictates how the rewards change across columns.

The difference in the recharging costs between the top and

bottom row is introduced in order to address the cases when

UAV is flying on top of a river and it has difficulties to recharge

on one of the banks of the river due to rocks or dense forests.

Thus, the grid world has 21×41 cells, where at each cell there

exist 8 possible actions and 26 possible battery levels.

In the conducted experiments, TEXPLORE utilizes models

with 15 decision trees. The discount factor, γ, is set to 0.9;

while UCT algorithm has λ = 0.1 for planning. We also choose

to act greedily relative to the learned model of the environment.

As for Q-Learning method, it is used with ǫ = 0.1 (for ǫ-greedy

exploration), the learning rate α = 0.3 and the action values

are set to 0 at the initial stage.

Similar to [7], we initialize the model learning by giving

sample seeding experiences from the environment, namely one

experience from each recharging row, a single experience of

the goal state and a single experience of the terminal state

when the battery level is zero (sbattery = 0). In addition, when

the agent selects a particular action there exist 0.2 probability

that it will move to another adjacent square instead of going

as intended. This was done to increase stochasticity in the

experiment. All initial reward values and constants (γ, λ, α
and ǫ) were chosen from an experienced guess, and then they

were tuned by trial and error for better performance.

V. RESULTS

In this section, we describe the results obtained from the

conducted experiments. The experiments are implemented on

the simulated quadcopter using a combination of ROS and

Gazebo. To simulate the grid world, the dimension of a cell

is set to 0.2m in Gazebo world; while the height of the

quadcopter flight is fixed to 2m. The (x, y) location of UAV

is obtained by taking a global position of UAV from Gazebo

simulator. This position is then discretized in order to work

in the grid world. The quadcopter starts around the origin and

moves towards the goal located at x = 6m and y = 0m in

Gazebo world. Since the model learning and planning run in

the background, we can choose any required action selection

rates. For our simulation, the action rate is set to 10Hz.

Firstly, TEXPLORE based approach is compared with the

baseline model-free method known as Q-Learning. Figure 5

illustrates the average rewards per episode over 10 trials of

these methods. Since Q-Learning implements an exhaustive

exploration to achieve a near-optimal behavior, it fails to

reach the goal location over the first 150 episodes. As for

TEXPLORE, it performs targeted exploration on states that

are uncertain in the model and promising for the final policy.

Therefore, it quickly accrues more rewards than Q-Learning.

In the beginning, the agent explores the environment and

receives the similar rewards as Q-Learning. However, due to
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Fig. 5: Average reward per episode over the first 150 episodes.

Results are averaged over 10 trials.

the targeted exploration, the agent gradually improves its per-

formance and starting from episode 25, it obtains significantly

more rewards per episode than Q-Learning based method.

To see the learning process in detail, we also present heat

maps (averaged over 10 trials) which show the states visited

by the agent. The brightness of the colors shows the number

of times the quadcopter visited that specific cell. More visits

are indicated by brighter colors. The heat map over the first

150 episodes is shown in Fig. 6a. Before the learning starts, the

color of the heat map is fully monotonous as shown in Fig. 6b.

In the first 20 episodes, the quadcopter agent explores the map

and tries to find states that are promising for the final policy

(Fig. 6c). After finding promising states, the agent continues

the exploration on states close to the recharging cells and the

path to the goal as depicted in Fig. 6d. In Fig. 6d, we can

also observe that cells in the top part are brighter than cells

in the bottom part. This can be easily explained by recalling

that recharging at cells in the bottom row results in more

negative rewards compare to the top row. Because of more

negative rewards, the agent concludes that it is not worthwhile

to recharge at the bottom row, and after episode 50, it only

recharges from the top row and acts greedily relative to its

learned model as illustrated in Fig. 6e.

Figure 7 shows the policy map at the maximum battery

level (sbattery = 25) after 150 episodes. We used the policy

map with the arrows to illustrate in what direction the agent

will move from any specific cell at the maximum battery level.

Initially, the quadcopter agent does not know how to reach the

goal location and where to recharge the batteries. However,

after 150 episodes, we can clearly see that the agent learns a

proper route and knows in which direction to move in order

to reach the goal. It should be noted that the policy map is

obtained for the battery level 25, for another battery level, we

will obtain a different policy map that will show the agent’s

movements for that particular case.

Figure 8 shows a sequence of snapshots of the flight.

The sequence consists of four snapshots representing the

quadcopter’s flight stages. The trajectory of the quadcopter’s

flight is depicted in Fig. 9.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presents an implementation of model-based RL

method as the high level control of UAV that has to find

an efficient route when it is constrained in battery life. The

proposed approach has been tested with a simulated quadcopter

UAV in ROS and Gazebo environment. The experimental

results have shown that our method is able to learn a good

behavior in a few iterations and performs actions in real-

time. Moreover, we have shown that our approach significantly

outperforms Q-learning based method. The obtained results

also demonstrate that RL algorithms, especially TEXPLORE,

is a promising choice for improving the autonomous behavior

of UAVs.

This work is just one step towards the fully autonomous

navigation of UAVs. Future studies will explore the challenges
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(e) Episodes 51-150

Fig. 6: The heat map of the number of visits averaged over 10 trials. More visits are indicated by brighter colors.



                                                                                  

                                                                                  

                                                                                  

                                                                                  

                                                                                  

                                                                                  

                                                                                  

                                                                                  

                                                                                  

                                                                                  

                                                                                  

                                                                                  

                                                                                  

                                                                                

                                                                                  

                                                                                  

                                                                                  

                                                                                  

                                                                                  

                                                                                  

                                                                                  

Fig. 7: The policy map at battery level 25 after 150 episodes. Starting states are within the red box, the goal is in the blue cell.

(b) (a) 

(c) (d) 

Fig. 8: A sequence of snapshots of learned trajectory. The

location of UAV: (a) at initial position; (b) at turning stage

towards recharging (c) at recharging location; (d) at the goal.

The video is available at https://goo.gl/eLD8fJ.

of operating in the continuous domain and focus on conducting

experiments on real-world quadcopter UAVs. In addition, we

will explore other model learning and planning methods for

TEXPLORE in order to further improve the performance of

the proposed approach.
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